

E-ISSN: 2708-4507 P-ISSN: 2708-4493 IJEM 2021; 1(1): 22-29 © 2021 IJEM www.microcircuitsjournal.com Received: 04-01-2021 Accepted: 06-02-2021

Massoud Danishmal

Electrical power engineering department, Ghazni Technical University, Afghanistan

Factors affecting the design and economic operation of distribution networks and its investigation in the 0.4 KV distribution network of Ghazni city

Massoud Danishmal

Abstract

The design of power distribution systems should be such that it can technically respond to the increase in electricity demand properly and economically, optimally designed and high network reliability. In order to respond to the increase in electricity demand, load forecasting must be done so that in addition to providing the electricity needed by customers, expansion of power generation centers, expansion of substations, expansion of transformer stations and selection of their appropriate location can be done optimally. In this article, we first examine the definitions and factors that are technically and economically effective in the economic design of energy distribution systems. And in the next stage, we will see whether these above-mentioned effective factors are considered in the 0.4 kV distribution network of Ghazni city or not.

Keywords: Electricity demand, transformer station, distribution systems, design of energy distribution systems, subscribers

Introduction

Ghazni city for the first time in 04/01/2018 benefited from imported electricity. A part of Ghazni city has been supplied with electricity by a diesel generator and private companies since 1977 using a non-standard network. Currently, about 4.5 megawatts of electricity is distributed in Ghazni city and it is planned to increase to 25 megawatts in the coming years. The distribution network of Ghazni city in the fourth period of 1398 had 11.66% of waste and the lowest price of peak voltage was in the last part of Pashtunabad village, which reached 180 volts. Medium voltage networks (20 kV and less), low voltage and distribution systems are occasionally developed to be able to power new consumers.

If this development is not planned according to international standards and standards, and this is accompanied by poor quality equipment, damaged buildings and insufficient maintenance and care, as well as theft of energy, defects in the meter system, electricity transmitted without meters, etc. It will result in an extraordinary loss of electricity and low quality standards and reliability of extremely low consumption in the systems. As a result, the transmission of electrical energy by the power grid system from the source to the consumer will waste the main equipment (line and transformer), will cause a certain amount of electrical energy to be absorbed by the active resistors of the equipment and transferred to the environment. The second compound is passive resistors that convert electrical energy into electromagnetic energy.

Research Methodology

This scientific article is a field research article. The present research method is divided into two main parts:

- 1. Gathering information
- 2. Examining the samples and analyzing the obtained knowledge.

Data collection has been done in two ways: Observation method and documentary method

Factors affecting the network design and economic operation of electrical distribution systems

One of the main tasks of power distribution companies is to provide constant voltage and

Massoud Danishmal Electrical power engineering department, Ghazni Technical University, Afghanistan frequency for subscribers, continuity of power supply and safety of the distribution network. The selection of electricity distribution network is done according to factors such as route (lane length, route type, and transverse route limitation), population density, economic factors and environmental beauty. Unauthorized use of 0.4 kV distribution networks is easier and more common due to the availability of the network, and preventing it, in addition to having a cost, causes local social tensions.

In general, the following points should be considered for the design of the distribution network:

- Full knowledge of the geographical location of the place
- Prepare location maps to standard scales
- Determine the number of subscribers by their energy consumption and their distance from the power transformer.
- Determining the cross section of network wires by considering the power consumption on each circuit and their distance from the power transformer.
- Place the transformers in the center of gravity of the load (in this case the voltage loss is minimized)
- The length of each circuit of the transformer should not exceed the allowable limit (500-600) meters.
- The possibility of future development and increase in consumption should be considered.

The amount of load consumed should not be considered as

the maximum total load, but the load synchronization coefficient should be calculated by considering the load factor and the required transformer should be selected. Determining the capacity of the transformer using existing international standards.

Considering that the electricity industry is one of the most vital industries in the country, so it requires great attention and investment, this industry needs huge and long-term investment in production, transmission and distribution, which is part of the country's economic potential focuses on itself.

Current distribution networks have many problems in proper performance. These problems create difficult conditions for operation, especially in periods of maximum demand, and reduce the quality and reliability of the system.

Electric load graph

Load refers to a device or set of devices or consumers that receives electricity from the grid. Electric load graph is a graph of consumption changes in time, which is shown daily, weekly, monthly and annually. Load forecast of a city or region Electric load graph is usually drawn monthly, seasonally and annually. Different consumers do not receive their maximum load simultaneously from the network and depending on the type of consumption, the time to receive the maximum varies. Figure (1) shows the electric charge graph of the Ghazni Breshna distribution network in 24 hours

Fig 1: Electric load graph of Ghazni distribution network in 24 hours.

With the electric charge graph, we can obtain the average load and the load factor.

$$m = \frac{P_m}{P_{\text{max}}} = \frac{3.203}{4.42} = 0.724$$

The closer the load factor is to one, the optimal use of the networks and the smoother the load graph, ie the average

Load is closer to the maximum load, which is very low in the distribution network of Ghazni city.

Type of load

In selecting the network, the choice of load type (residential, commercial, industrial, peasant loads) must be specified Factors influencing overload, which are (population, civilization and improving living standards) must be considered. Factors influencing load forecasting are:

Fig 2: Factors affecting load forecasting

Considering the synchronization coefficient in the electricity distribution network is one of the effective factors.

Considering that the satisfaction of the subscribers is finally tangible in the distribution sector and the smallest defect shows itself more. Therefore, in this regard, serious measures in power distribution networks for the design and optimal use of power systems and compliance with standards is a necessity. Due to the vastness of electricity distribution networks on the one hand and the lack of engineering of these networks due to its high age, it is necessary to review these networks.

In the table below, the state of 0.4 kV distribution network in Ghazni city is briefly studied.

No	The name of the junction	Transformer station name	Transformer number	Transformer Capacity (KVA	Circuit)number	Circuit length (m)	Number of subscribers in the network	Circuit mode (normal / overload)	Circuit Overload%	Status of meter boxes and Fuse (good / very good / replaceable)	Considerations
					C#1	500	97	Normal		Good	
1		Rowza No. 1	TR001	200	C#2	540	74	Normal		Good	_
					C#3	405	145	Normal		Good	_
					C#1	700	90	Normal		Good	_
2		Rowza No. 2	TR002	400	C#2	800	150	Normal		Good	_
					C#3	750	190	Normal		Good	_
		Rowza No. 3	TR003	200	C#1	855	27	Normal		Good	_
3					C#2	945	26	Normal		Good	_
5					C#3	550	28	Normal		Good	_
					C#4	450	11	Normal		Good	
				160	C#1	650	55	Normal		Good	
4		Rowza No. 4	TR004		C#2	400	11	Normal		Good	
-		Kowza no. 4	11004		C#3	750	32	Normal		Good	
					C#4	700	21	Normal		Good	
5		Khwaja Baqal	TR005	160	C#1	600	135	Normal		Good	_
5					C#2	500	120	Normal		Good	
		Shahre Kohna	TR006	400	C#1	730	122	Overload	15%	Replaceable	
6					C#2	758	141	Normal		Replaceable	
0					C#3	464	156	Normal		Replaceable	
	Ghazni Brashna				C#4	435	189	Overload	20%	Replaceable	Overload transformers of
	has no Junction	Bahlool Sahib	TR007	160	C#1	630	108	Normal		Replaceable	Ghazni city distribution
7	has no junction				C#2	350	66	Normal		Good	network are whiten the allowed range
					C#3	495	88	Normal		Replaceable	
		Al-Biruni (Bahlool Saheb Gardens)	TR008	160	C#1	808	102	Normal		Good	
8					C#2	612	149	Normal		Good	
					C#3	941	17	Normal		Good	
		Diesel House No. 1	[.] No. TR009	800	C#1	1260	173	Overload	20%	Replaceable	
					C#2	900	111	Normal		Replaceable	
9					C#3	700	3	Overload	15%	Replaceable	
					C#4	900	156	Normal		Replaceable	
					C#5	900	90	Normal		Replaceable	
					C#6	1150	137	Normal		Replaceable	
		Hakim Sahib No. 1	TR010	250	C#1	600	42	Normal		Good	
10	-				C#2	500	29	Normal		Good	
					C#3	550	20	Normal		Good	
11		Hakim Saheb No. 2	TR011	200	C#1	228	76	Normal		Good	
					C#2	284	51	Normal		Good]
					C#3	389	47	Normal		Good]
		Shamir Sahib	ahib TR012	800	C#1	581	90	Normal		Replaceable	
12					C#2	730	213	Overload	20%	Replaceable	
					C#3	419	122	Normal		Replaceable]

Table 1: Status of low voltage lines of Ghazni distribution networ

International Journal of Electronics and Microcircuits

www.microcircuitsjournal.com

	Oala a Navy same	TR013	200	C#1	250	34	Normal		Good	
3	Qala-e-Now sale			C#2	650	153	Normal		Good	
	leg			C#3	600	66	Normal		Good	
				C#1	1080	138	Normal		Good	
	Discal House No.			C#2	990	315	Normal		Good	
4	Dieser House No.	TR014	1000	C#3	300	39	Normal		Good	
	2			C#4	350	11	Normal		Replaceable	
				C#5	855	35	Normal		Good	
	Osla a Nam	TR015	160	C#1	415	75	Normal		Good	
5	Qala-e-Now Khajah Poshnaj			C#2	743	144	Normal		Good	
	Kilajeli Kosililai			C#3	994	122	Normal		Good	
				C#1	265	24	Normal		Good	
6	Maihan Abad	TR016	160	C#2	300	52	Normal		Good	
				C#3	87	4	Normal		Good	
		TR017	400	C#1	491	59	Normal		Good	
7	Pashtun Abad No.			C#2	148	9	Normal		Good	
. /	1			C#3	678	158	Normal		Replaceable	
				C#4	495	43	Normal		Good	
	Deskter Abed Ne	TR018	200	C#1	552	99	Normal		Good	
8	Pasniun Adad No.			C#2	414	90	Normal		Good	
	2			C#3	475	64	Normal		Replaceable	
	Qala-e-Amir	TR019	160	C#1	484	60	Normal		Good	
9	Mohammad Khan			C#2	400	106	Overload	20%	Replaceable	
	No. 1			C#3	921	132	Normal		Good	
	Qala-e-Amir	TR020		C#1	945	155	Normal		Good	
20	Mohammad Khan		200	C#2	150	17	Normal		Good	
	No. 2			C#3	498	49	Overload	10%	Replaceable	
				C#1	810	119	Normal		Replaceable	
1	Fourth Plan	TP021	800	C#2	855	149	Normal		Good	
.1	r ourur r ian	1K021	800	C#3	585	69	Normal		Good	
				C#4	810	97	Normal		Good	
22	Saqafat center	TR022	250	C#1	400	1	Normal		Good	
	Faiz Mohammad	TR023		C#1	300	119	Normal		Replaceable	
3	Katib Road No. 1		200	C#2	450	123	Normal		Good	
	Kato Koad No. 1			C#3	250	31	Normal		Good	
				C#1	850	92	Normal		Good	
1	faiz Mohammad	hammad pad No. 2 TR024	400	C#2	700	107	Normal		Replaceable	
	Katib Road No. 2		400	C#3	550	134	Normal		Good	
				C#4	500	84	Normal		Good	
5	Nawabad Qadam	TR025	250	C#1	550	147	Normal		Good	
.5	Khan Castle	11025	230	C#2	600	115	Normal		Good	
6	Qadam Khan	TR026	200	C#1	900	104	Normal		Good	
.0	Castle Hill			C#2	450	147	Normal		Good	
	Oadam Khan	TR027	200	C#1	400	26	Normal		Good	
27	Castle			C#2	800	92	Normal		Good	
	Cublic			C#3	500	20	Normal		Good	

International Journal of Electronics and Microcircuits

www.microcircuitsjournal.com

					C#4	250	45	Normal		Good	
28		Haider Abad No.	70.20	200	C#1	600	122	Normal		Replaceable	
	o				C#2	450	191	Normal		Replaceable	
	0	1	1K020	200	C#3	500	69	Normal		Replaceable	
					C#4	300	54	Normal		Good	
					C#1	300	160	Normal		Replaceable	
5	`	Haider Abad No.	TD020	200	C#2	750	138	Normal		Replaceable	
2	9	2	1K029	200	C#3	650	40	Normal		Good	
					C#4	350	11	Normal		Good	
		Sanjetak	TR030	160	C#1	765	44	Normal		Good	
3	D				C#2	500	23	Normal		Good	
					C#3	1200	74	Normal		Good	
2	1	171 · A1' C 1 '1	TD021	250	C#1	550	205	Normal		Good	
3	1	Kiiwaja Ali Saliio	1K051	230	C#2	850	86	Normal		Good	
		Third Plan	TR032	800	C#1	990	99	Normal		Good	
2	_				C#2	810	110	Normal		Good	
3	2				C#3	675	61	Normal		Good	
					C#4	250	19	Normal		Good	
		Said Ahmad Makaee	TR033	800	C#1	550	99	Normal		Good	
2					C#2	850	67	Normal		Replaceable	
5	5				C#3	650	57	Normal		Good	
					C#4	550	135	Overload	25%	Replaceable	
		Qala-e-	TR034	250	C#1	850	183	Normal		Good	
3					C#2	350	99	Normal		Good	
5	+	Tahwildaran			C#3	400	25	Normal		Good	
					C#4	1000	130	Normal		Good	
		Qala-e- Ahengran	TR035	200	C#1	700	57	Normal		Good	
3	5				C#2	500	48	Normal		Good	
5	5				C#3	495	68	Normal		Good	
					C#4	540	35	Normal		Good	
					C#1	855	156	Normal		Good	
3	6	Khashik No. 1	TR036	200	C#2	400	94	Normal		Good	
			<u>.</u>		C#3	720	39	Normal		Good	
		Khashik No. 2	TR037		C#1	1260	356	Normal		Good	
3	7			200	C#2	495	48	Normal		Good	
					C#3	990	61	Normal		Good	
					C#4	350	23	Normal		Good	
				250	C#1	495	68	Normal		Good	
3	8	Khashik No. 3	TR038		C#2	540	73	Normal		Good	
					C#3	720	76	Normal		Good	
2	9	Khak Ghariban No. 1	TR039	160	C#1	540	200	Normal		Replaceable	
5					C#2	500	125	Normal		Replaceable	
		Khak Ghariban No. 2	TR040	100	C#1	350	70	Normal		Replaceable	
4	D				C#2	945	82	Normal		Replaceable	
L					C#3	855	90	Normal		Replaceable	

Result and Discussion

Providing high quality services, continuity of electricity supply and economical distribution network and its safety is one of the main tasks of electricity distribution companies that non-compliance with standards in the design and economic operation of distribution networks has adverse effects on all of the above in economic design and operation, waste distribution networks increase network uncertainty and waste of capital, which reduces the efficiency of the system. By observing the standards in the economic design and operation of distribution networks and waste reduction, more electricity can be supplied to the subscribers. Based on the results of this study, it is suggested to pay attention to the following:

- Transformers should be placed in the center of gravity of the load as much as possible.
- 5 Transformers in which the voltage conversion takes

place in three stages (20/6 / 0.4 KV) should be replaced to transformers in which the voltage conversion takes place in two stages (20 / 0.4 KV).

- The length of each transformer feeder should not exceed 500 to 600 meters.
- To reduce the length of the feeders, multiple lowcapacity transformers should be used instead of highcapacity transformers.
- Possibility of future development and increase of consumption according to the overload coefficient and load sharing coefficient.
- Balancing the output loads of transformers should be considered as much as possible.
- If the load of the transformer is high, replace the transformer with a transformer with a higher capacity, otherwise it will be necessary to separate the network and add another transformer to the network.

Conclusion

The studies conducted in this article show that the 0.4 kV distribution network in Ghazni is traditionally designed and unfortunately it is not taken into consideration and is not taken seriously, and this has increased the current costs of the distribution network and in return has and has adverse effects on consumers. Non-observance of standard distances; the choice of capacity and installation location of the transformer without technical calculations has caused voltage losses and overload of transformers in the network.

- Four transformers in the distribution network of Ghazni city are overloaded, two transformers with a capacity of 160KVA were 20% overloaded and two transformers with a capacity of 200KVA were 15% overloaded, and their overload is within the allowable limit.
- The distance of 57 circuits is in the range of (1260-700) meters, which is not allowed, and also the use of subscribers with shorter cross-section lines has reduced the voltage, which reaches 170 volts in some parts of the network.
- The power of transformers is traditionally chosen so that one kilovolt of amperes is provided for each family.
- The electric charge graph of the Ghazni city distribution network shows that it is not a cost-effective network.

References

- 1. Factsheet, Ofgem, London, UK, Aug. "Electricity Distribution Units and Loss Percentages Summary 2010.
- 2. Kashem MA, Jasmon GB, Ganapathy V. New approach of distribution system reconfiguration for loss minimization," International Journal of Electrical Power and Energy System 2000;22(4):269-276.
- 3. Lin CH. Distribution network reconfiguration for load balancing with a colored Petri net algorithm," *IEE* Proceedings: Communications 2003;150(3):317-324.
- 4. A Dahalan WM, Mokhlis H. Network reconfiguration for loss reduction with distributed generations using PSO," 2012 IEEE International Conference on Power and Energy (PECon) 2012, 823-828.
- 5. Carter-Brown CG, Gaunt CT. Model for the apportionment of the total voltage drop in Combined Medium and Low Voltage Distribution Feeders", Journal of South African Institute of Electrical Engineers 2006, 97(1).
- 6. Homaee O, Najafi A, Dehghanian M, Attar M, Falaghi H. A practical approach for distribution network load balancing by optimal rephrasing of single phase customers using discrete genetic algorithm, "International Transactions on Electrical Energy Systems 2019;29(5):e2834.
- Ukil A, Siti W. Feeder load balancing using fuzzy logic and combinatorial optimization-based implementation," Electric Power Systems Research 2008;78(11):1922-1932.
- 8. Sallam A, Abdel Hay, Malik OP. Electric Distribution, System, Wiley Press 2011.