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Abstract 
In this paper we introduce an approach to increase integration rate of elements of a voltage 
differencing-differential input buffered amplifier. In the framework of the approach we consider a 
heterostructure with special configuration. Several specific areas of the heterostructure should be doped 
by diffusion or ion implantation. Annealing of dopant and/or radiation defects should be optimized. 
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Introduction 

An actual and intensively solving problems of solid state electronics is increasing of 

integration rate of elements of integrated circuits (p-n-junctions, their systems et al.) [1-8]. 

Increasing of the integration rate leads to necessity to decrease their dimensions. To decrease 

the dimensions are using several approaches. They are widely using laser and microwave 

types of annealing of infused dopants. These types of annealing are also widely using for 

annealing of radiation defects, generated during ion implantation [9-17]. Using the approaches 

gives a possibility to increase integration rate of elements of integrated circuits through 

inhomogeneity of technological parameters due to generating in homogenous distribution of 

temperature. In this situation one can obtain decreasing dimensions of elements of integrated 

circuits [18] with account Arrhenius law [1, 3]. Another approach to manufacture elements of 

integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion 

implantation [1-3]. However in this case optimization of dopant and/or radiation defects is 

required [18]. 

In this paper we consider a heterostructure. The heterostructure consist of a substrate and 

several epitaxial layers. Some sections have been manufactured in the epitaxial layers. 

Further we consider doping of these sections by diffusion or ion implantation. The doping 

gives a possibility to manufacture field-effect transistors in the framework of a voltage 

differencing-differential input buffered amplifier so as it is shown on Figs. 1. The 

manufacturing gives a possibility to increase density of elements of the voltage differencing-

differential input buffered amplifier [4]. After the considered doping dopant and/or radiation 

defects should be annealed. In the framework of the paper we analyzed dynamics of 

redistribution of dopant and/or radiation defects during their annealing. We introduce an 

approach to decrease dimensions of the element. However it is necessary to complicate 

technological process. 
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Fig 1: The considered amplifier [4]. 

 

Method of Solution 

In this section we determine spatio-temporal distributions of concentrations of infused and implanted dopants. To determine 

these distributions we calculate appropriate solutions of the second Fick's law [1, 3, 18]. 

 

 
 

.  (1)  

 

Boundary and initial conditions for the equations are 

 

, , , , 

 

, , C (x,y,z,0) =f (x,y,z) .  (2)  

 

The function C (x, y, z, t) describes the spatio-temporal distribution of concentration of dopant; T is the temperature of 

annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient could be changed with changing 

materials of heterostructure, with changing temperature of materials (including annealing), with changing concentrations of 

dopant and radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by the following 

relation with account results in Refs [20-22]. 

 

 (3)  

 

Here the function DL (x, y, z, t) describes the spatial (in heterostructure) and temperature (due to Arrhenius law) dependences 

of diffusion coefficient of dopant. The function P (x, y, z, t) describes the limit of solubility of dopant. Parameter   [1, 3] 

describes average quantity of charged defects interacted with atom of dopant [20]. The function V (x, y, z, t) describes the 

spatio-temporal distribution of concentration of radiation vacancies. Parameter V* describes the equilibrium distribution of 

concentration of vacancies. The considered concentrational dependence of dopant diffusion coefficient has been described in 

details in [20]. It should be noted, that using diffusion type of doping did not generation radiation defects. In this situation 1= 

2= 0. We determine spatio-temporal distributions of concentrations of radiation defects by solving the following system of 

equations [21, 22]. 
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Boundary and initial conditions for these equations are 

 

, , , , 

 

, ,  (x,y,z,0) =f (x, y, z)       (5)  

 

Here  =I,V. The function I (x, y, z, t) describes the spatio-temporal distribution of concentration of radiation interstitials; D 

(x, y, z, t) are the diffusion coefficients of point radiation defects; terms V2 (x, y, z, t) and I2 (x, y, z, t) correspond to generation 

divacancies and diinterstitials; kI, V (x, y, z, t) is the parameter of recombination of point radiation defects; kI, I (x, y, z, t) and 

kV,V (x, y, z, t) are the parameters of generation of simplest complexes of point radiation defects. 

Further we determine distributions in space and time of concentrations of divacancies V (x, y, z, t) and diinterstitials I (x, y, 

z, t) by solving the following system of equations [21, 22]. 
 

 
 

 (6)  

 

 
 

. 

 

Boundary and initial conditions for these equations are 

 

, , , , 

 

, , 

 

I (x,y,z,0) =fI (x, y, z) , V (x,y,z,0) =fV (x, y, z) .   (7)  

 

Here D (x, y, z, t) are the diffusion coefficients of the above complexes of radiation defects; kI (x, y, z, t) and kV (x, y, z, t) 

are the parameters of decay of these complexes. 
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We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated approach [18]. 

The approach based on transformation of approximations of diffusion coefficients in the following form: D (x, y, z, t) 

=D0[1+ g (x, y, z, t)], where D0 are the average values of diffusion coefficients, 0<1, |g (x, y, z, T) |1,  =I,V. We also 

used analogous transformation of approximations of parameters of recombination of point defects and parameters of 

generation of their complexes: kI, V (x, y, z, t) =k0I,V[1+I,V gI, V (x, y, z, t)], kI, I (x, y, z, t) =k0I,I [1+I,I gI, I (x, y, z, t)] and kV, V (x, 

y, z, t) =k0V,V [1+V,V gV, V (x, y, z, t)], where k01,2 are the their average values, 0I,V <1, 0I,I <1, 0V,V<1, | gI,V (x, y, z, t) |1, 

| gI, I (x, y, z, t) |1, |gV, V (x, y, z, t) |1. Let us introduce the following dimensionless variables: , 

 , , , ,  = x/Lx,  = y /Ly,  = 

z/Lz. The introduction leads to transformation of Eqs. (4) and conditions (5) to the following form 

 

 
 

 
 

 (8)  

 

 
 

 
 

 
 

, , , , 

 

, , . (9)  

 

We determine solutions of Eqs. (8) with conditions (9) framework recently introduced approach [18], i.e. as the power series 

 

.  (10)  

 

Substitution of the series (10) into Eqs. (8) and conditions (9) gives us possibility to obtain equations for initial-order 

approximations of concentration of point defects  and  and corrections for them  

and , i 1, j 1, k 1. The equations are presented in the Appendix. Solutions of the equations could be obtained 

by standard Fourier approach [24, 25]. The solutions are presented in the Appendix. 

Now we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To 

determine the distributions we transform approximations of diffusion coefficients in the following form: D (x, y, z, t) 

=D0[1+ g (x, y, z, t)], where D0 are the average values of diffusion coefficients. In this situation the Eqs. (6) could be 

written as 

 

 
 

file://server/test/Electronics%20Engineering/Electronics%20and%20Microcircuits/issue/1%20Vol/1%20issue/www.microcircuitsjournal.com


International Journal of Electronics and Microcircuits  www.microcircuitsjournal.com 

~ 20 ~ 

 
 

 
 

 
 

 
 

. 

 

Farther we determine solutions of above equations as the following power series 

 

   (11)  

 

Now we used the series (11) into Eqs. (6) and appropriate boundary and initial conditions. The using gives the possibility to 

obtain equations for initial-order approximations of concentrations of complexes of defects 0 (x, y, z, t) , corrections for 

them i (x, y, z, t) (for them i 1) and boundary and initial conditions for them. We remove equations and conditions to the 

Appendix. Solutions of the equations have been calculated by standard approaches [24, 25] and presented in the Appendix. 

Now we calculate distribution of concentration of dopant in space and time by using the approach, which was used for analysis 

of radiation defects. To use the approach we consider following transformation of approximation of dopant diffusion 

coefficient: DL (x, y, z, t) =D0L[1+ LgL (x, y, z, t)], where D0L is the average value of dopant diffusion coefficient, 0L< 1, |gL 

(x, y, z, t) |1. Farther we consider solution of Eq. (1) as the following series: 

 

. 

 

Using the relation into Eq. (1) and conditions (2) leads to obtaining equations for the functions Cij (x, y, z, t) (i 1, j 1) , 

boundary and initial conditions for them. The equations are presented in the Appendix. Solutions of the equations have been 

calculated by standard approaches (see, for example) [24, 25]. The solutions are presented in the Appendix. 

We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically by using the second-

order approximations on all parameters, which have been used in appropriate series. Usually the second-order approximations 

are enough good approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been 

checked by numerical simulation. 

 

Discussion 

In this section we analyzed spatio-temporal distributions of concentrations of dopants. Figs. 2 shows typical spatial 

distributions of concentrations of dopants in neighborhood of interfaces of heterostructures. We calculate these distributions of 

concentrations of dopants under the following condition: value of dopant diffusion coefficient in doped area is larger, than 

value of dopant diffusion coefficient in nearest areas. In this situation one can find increasing of compactness of field-effect 

transistors with increasing of homogeneity of distribution of concentration of dopant at one time. Changing relation between 

values of dopant diffusion coefficients leads to opposite result (see Figs. 3). 

It should be noted, that framework the considered approach one shall optimize annealing of dopant and/or radiation defects. To 

do the optimization we used recently introduced criterion [26-34]. The optimization based on approximation real distribution by 

step-wise function  (x, y, z) (see Figs. 4). Farther the required values of optimal annealing time have been calculated by 

minimization the following mean-squared error 

 

.  (12)  
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Fig 2a: Dependences of concentration of dopant, infused in heterostructure from Figs. 1, on coordinate in direction, which is perpendicular 

to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases 

with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion 

coefficient in the substrate 
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Fig 2b: Dependences of concentration of dopant, implanted in heterostructure from Figs. 1, on coordinate in direction, which is 

perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of 

heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value 

of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogenous sample and annealing time  = 0.0048 (Lx
2+Ly

2+Lz
2) 

/D0. Curve 2 corresponds to homogenous sample and annealing time  = 0.0057 (Lx
2+Ly

2+Lz
2) /D0. Curves 3 and 4 correspond to 

heterostructure from Figs. 1; annealing times  = 0.0048 (Lx
2+Ly

2+Lz
2) /D0 and  = 0.0057 (Lx

2 +Ly
2+Lz

2) /D0, respectively 

 

 
 

Fig 3a: Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from Figs. 1 in direction 

parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values of dopant diffusion coefficients 

increases with increasing of number of curves. Value of dopant diffusion coefficient in this section is smaller, than value of dopant diffusion 

coefficient in nearest sections 
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Fig 3b: Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted 

dopant in system of two epitaxial layers. Dushed lines are spatial distributions of implanted dopant in one epitaxial layer. Annealing time 

increases with increasing of number of curves 
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Fig 4a: Distributions of concentration of infused dopant in depth of heterostructure from Fig. 1 for different values of annealing time (curves 

2-4) and idealized step-wise approximation (curve 1) . Increasing of number of curve corresponds to increasing of annealing time 
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Fig 4b: Distributions of concentration of implanted dopant in depth of heterostructure from Fig. 1 for different values of annealing time 

(curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time 
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Fig 5a: Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes the dependence of 

the annealing time on the relation a/L and  =  = 0 for equal to each other values of dopant diffusion coefficient in all parts of 

heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 describes 

the dependence of the annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 4 describes the dependence of the annealing 

time on value of parameter  for a/L=1/2 and  =  = 0 
 

We show optimal values of annealing time as functions of 

parameters on Figs. 5. It is known, that standard step of 

manufactured ion-doped structures is annealing of radiation 

defects. In the ideal case after finishing the annealing dopant 

achieves interface between layers of heterostructure. If the 

dopant has no enough time to achieve the interface, it is 

practicably to anneal the dopant additionally. The Fig. 5b 

shows the described dependences of optimal values of 

additional annealing time for the same parameters as for 

Fig. 5a. Necessity to anneal radiation defects leads to 

smaller values of optimal annealing of implanted dopant in 

comparison with optimal annealing time of infused dopant. 
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Fig 5b: Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes the dependence of 

the annealing time on the relation a/L and  =  = 0 for equal to each other values of dopant diffusion coefficient in all parts of 

heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 3 describes 

the dependence of the annealing time on value of parameter  for a/L=1/2 and  =  = 0. Curve 4 describes the dependence of the annealing 

time on value of parameter  for a/L=1/2 and  =  = 0 

 

Conclusions 

In this paper we introduce an approach to increase integration rate of element of a voltage differencing-differential input 

buffered amplifier. The approach gives us possibility to decrease area of the elements with smaller increasing of the element’s 

thickness. 
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